79 research outputs found

    An Exercise in Invariant-based Programming with Interactive and Automatic Theorem Prover Support

    Full text link
    Invariant-Based Programming (IBP) is a diagram-based correct-by-construction programming methodology in which the program is structured around the invariants, which are additionally formulated before the actual code. Socos is a program construction and verification environment built specifically to support IBP. The front-end to Socos is a graphical diagram editor, allowing the programmer to construct invariant-based programs and check their correctness. The back-end component of Socos, the program checker, computes the verification conditions of the program and tries to prove them automatically. It uses the theorem prover PVS and the SMT solver Yices to discharge as many of the verification conditions as possible without user interaction. In this paper, we first describe the Socos environment from a user and systems level perspective; we then exemplify the IBP workflow by building a verified implementation of heapsort in Socos. The case study highlights the role of both automatic and interactive theorem proving in three sequential stages of the IBP workflow: developing the background theory, formulating the program specification and invariants, and proving the correctness of the final implementation.Comment: In Proceedings THedu'11, arXiv:1202.453

    Mutual Mobile Membranes with Timers

    Full text link
    A feature of current membrane systems is the fact that objects and membranes are persistent. However, this is not true in the real world. In fact, cells and intracellular proteins have a well-defined lifetime. Inspired from these biological facts, we define a model of systems of mobile membranes in which each membrane and each object has a timer representing their lifetime. We show that systems of mutual mobile membranes with and without timers have the same computational power. An encoding of timed safe mobile ambients into systems of mutual mobile membranes with timers offers a relationship between two formalisms used in describing biological systems

    Quantifying the implicit process flow abstraction in SBGN-PD diagrams with Bio-PEPA

    Get PDF
    For a long time biologists have used visual representations of biochemical networks to gain a quick overview of important structural properties. Recently SBGN, the Systems Biology Graphical Notation, has been developed to standardise the way in which such graphical maps are drawn in order to facilitate the exchange of information. Its qualitative Process Diagrams (SBGN-PD) are based on an implicit Process Flow Abstraction (PFA) that can also be used to construct quantitative representations, which can be used for automated analyses of the system. Here we explicitly describe the PFA that underpins SBGN-PD and define attributes for SBGN-PD glyphs that make it possible to capture the quantitative details of a biochemical reaction network. We implemented SBGNtext2BioPEPA, a tool that demonstrates how such quantitative details can be used to automatically generate working Bio-PEPA code from a textual representation of SBGN-PD that we developed. Bio-PEPA is a process algebra that was designed for implementing quantitative models of concurrent biochemical reaction systems. We use this approach to compute the expected delay between input and output using deterministic and stochastic simulations of the MAPK signal transduction cascade. The scheme developed here is general and can be easily adapted to other output formalisms

    On the Interpretation of Delays in Delay Stochastic Simulation of Biological Systems

    Get PDF
    Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed. Mathematical modeling of biological systems with delays is usually based on Delay Differential Equations (DDEs), a kind of differential equations in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. In the literature, delay stochastic simulation algorithms have been proposed. These algorithms follow a "delay as duration" approach, namely they are based on an interpretation of a delay as the elapsing time between the start and the termination of a chemical reaction. This interpretation is not suitable for some classes of biological systems in which species involved in a delayed interaction can be involved at the same time in other interactions. We show on a DDE model of tumor growth that the delay as duration approach for stochastic simulation is not precise, and we propose a simulation algorithm based on a ``purely delayed'' interpretation of delays which provides better results on the considered model

    Automated Generation of User Guidance by Combining Computation and Deduction

    Full text link
    Herewith, a fairly old concept is published for the first time and named "Lucas Interpretation". This has been implemented in a prototype, which has been proved useful in educational practice and has gained academic relevance with an emerging generation of educational mathematics assistants (EMA) based on Computer Theorem Proving (CTP). Automated Theorem Proving (ATP), i.e. deduction, is the most reliable technology used to check user input. However ATP is inherently weak in automatically generating solutions for arbitrary problems in applied mathematics. This weakness is crucial for EMAs: when ATP checks user input as incorrect and the learner gets stuck then the system should be able to suggest possible next steps. The key idea of Lucas Interpretation is to compute the steps of a calculation following a program written in a novel CTP-based programming language, i.e. computation provides the next steps. User guidance is generated by combining deduction and computation: the latter is performed by a specific language interpreter, which works like a debugger and hands over control to the learner at breakpoints, i.e. tactics generating the steps of calculation. The interpreter also builds up logical contexts providing ATP with the data required for checking user input, thus combining computation and deduction. The paper describes the concepts underlying Lucas Interpretation so that open questions can adequately be addressed, and prerequisites for further work are provided.Comment: In Proceedings THedu'11, arXiv:1202.453

    Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking

    Full text link
    Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Integrating DGSs and GATPs in an Adaptative and Collaborative Blended-Learning Web-Environment

    Full text link
    The area of geometry with its very strong and appealing visual contents and its also strong and appealing connection between the visual content and its formal specification, is an area where computational tools can enhance, in a significant way, the learning environments. The dynamic geometry software systems (DGSs) can be used to explore the visual contents of geometry. This already mature tools allows an easy construction of geometric figures build from free objects and elementary constructions. The geometric automated theorem provers (GATPs) allows formal deductive reasoning about geometric constructions, extending the reasoning via concrete instances in a given model to formal deductive reasoning in a geometric theory. An adaptative and collaborative blended-learning environment where the DGS and GATP features could be fully explored would be, in our opinion a very rich and challenging learning environment for teachers and students. In this text we will describe the Web Geometry Laboratory a Web environment incorporating a DGS and a repository of geometric problems, that can be used in a synchronous and asynchronous fashion and with some adaptative and collaborative features. As future work we want to enhance the adaptative and collaborative aspects of the environment and also to incorporate a GATP, constructing a dynamic and individualised learning environment for geometry.Comment: In Proceedings THedu'11, arXiv:1202.453
    corecore